Решаем три проблемы прогнозирования в пищевой отрасли с помощью проверенных математических методов
Опрос, который мы проводили среди предприятий пищевой отрасли об инструментах прогнозирования продаж для целей планирования производства, показал, что 53% респондентов имеют специальный модуль в своих ERP системах, но несмотря на это продолжают пользоваться Excel.
Текущая ситуация. Три проблемы прогнозирования
Среди проблем прогнозирования выделены три основные (количество вариантов выбора не ограничивалось):
- точность прогнозирования – 85%
- трудоемкость прогнозирования – 69%
- отсутствие системного подхода к прогнозированию – 53%.
Качество прогнозирования (точность) обычно связано с тем, что в модули учетных систем «зашиты» традиционные методы прогнозирования, например, скользящее среднее. Традиционные алгоритмы плохо адаптируются к акциям, сезонности, трендам и, как следствие, дают неудовлетворительный по точности результат.
Попытка улучшить качество прогнозирования ведением таблиц в Excel – это трудоемкая деятельность. Ассортиментный ряд у производителей продуктов питания исчисляется сотнями, а количество клиентов может доходить до тысяч контрагентов. Условия проведения акций у клиентов могут не совпадать, и для аккуратного прогноза требуется его готовить в разрезе «номенклатурная позиция – контрагент», что приводит к большому количеству вычислений, который силами сотрудников и таблицами Excel не то, что сложно, иногда невозможно реализовать, а агрегирование прогноза до уровня номенклатуры также приводит к снижению точности.
Кроме того, «ручное» прогнозирование в Excel силами специалиста по планированию несет в себе риски: специалист может заболеть, уйти в отпуск или вообще покинуть компанию.
Решение. Новый подход к прогнозированию
Решение обозначенных проблем – переход от трудоемких расчетов к управлению процессами на основе данных с применением алгоритмов машинного обучения (ML).
Как это работает? На исторических данных о продажах, заказах, акциях минимум за два года строится математическая модель, которая учитывает календарь (праздники, выходные дни), сезонность, погоду, тренды продаж и прочие признаки, которые могут влиять на продажи. Модель автоматически прогнозирует в разрезе каждой отдельной номенклатуры и контрагента или канала продаж, с любой частотой и горизонтом, хотя важно помнить, что чем больше горизонт, тем ниже точность.
Чудес в этом решении нет – это проверенные математические алгоритмы, которые отлично подходят для высокооборачиваемых продуктов, в частности для пищевой отрасли.
Как запустить на своем производстве ML прогнозирование
Для начала необходимо сформулировать цели и задачи прогнозирования и обозначить объемы прогнозирования (количество номенклатур, контрагентов, складов и т. п.), частоту (ежедневно, еженедельно) и горизонт прогнозирования.
На основании сформулированной задачи формируется спецификация требуемых данных для построения ML модели. Потребуются исторические данные о продажах, заказах, акциях, данные по остаткам, история возвратов, уценок, списаний за последние два года, справочники товаров, контрагентов, складов и пр.
Важным критерием для проверки успешности построенной модели является выбор значения метрики качества прогнозирования, на основании которого построенную модель можно запускать в промышленную эксплуатацию.
Это может быть среднеквадратичная ошибка (RMSE) или средняя абсолютная ошибка в процентах (MAPE).
Если результаты прогнозирования модели при тестировании достигают целевой величины метрики качества, то решение можно запускать в промышленную эксплуатацию.
Сервис автоматического прогнозирования Datanomics развертывается в облаке и интегрируется в текущие учетные системы или системы планирования заказчика. Удобство использования облачных технологий – это экономия на вычислительных ресурсах (платим только за то, что используем и сколько используем), быстрое масштабирование с развитием производства, скорость расчетов и отсутствие администрирования (эти работы выполняет облачный провайдер), а также надежность и безопасность.
Не потребуется никаких ручных расчетов и правок ни во время акций, ни во время праздников, в том числе «плавающих» по календарю, например, таких как Пасха. Обученная модель автоматически рассчитает прогноз продаж, из которого формируются планы для производства.
Ирина
| #
отличный материал
ответить